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Theorem 1.1. Let (f,) be a sequence in LP;1 < p < oo such that some of the

following assumptions hold,

(1) sup,, || full, < M.

(ii) fn — fa.e. x€Q.

(@) | fo = flly = 0,n = oo.

(ii’) (fn) converges in measure to f.

If (i) holds and one of (ii)-(ii’) holds, then f, — f weakly o (L, L¥").
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1 Notations

Let Q2 be a o-finite measure space. Denote by L”(€2) the Lebesgue spaces equipped with the
norm || - ||, and the Lebesgue measure p, 1 < p < oo.

Definition 1.1 (Weak convergence in L?, [3]) Let 1 < p,q < oo, 1/p+1/qg=1, f € L*(Q),
fn € LP(Q) (neN),if

tim [ fu()g(e)ds = [ fa)glads, Vg € L), (11
then we say that ( f,,) converges weakly to f.

For simplicity, we shall use the following notations describing the convergence.
1) “ f, = fa.e.x € : almost everywhere convergence on ).

() “ f, — f weakly o(LP, L”") ” : weak convergence in L”.

3) “ fn, — fstronglyin LP ”: || f,, — f][, = 0 as n — oo.

2 Summerization of relationships

Lemma 2.1 Suppose that (f,) is a sequence in L*(X)), and the following conditions hold,
@) f, — f weakly o(L?, L"),

(b) f, > gae. x e

then f = g, a.e. in .
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Proof 1 of Lemma 2.1. In view of [3, Theorem 6.26] and (2 is a o-finite measure space, the

proof is completed. O

Proof 2 of Lemma 2.1. Define K, = conv( U {fz}> By [1, Exercise 3.13] we know

o° 1
f € K,,. Thus, there exists g,, € conv( U{ fz}> such that ||g, — f||, < — and therefore we
i=n n
shall choose {g,, } such that g,,, — f a.e. in Q. In view of (b), for almost everywhere x € €2,
given ¢ > 0, there exists N € N, |f,,(x) — g(z)| < ¢ whenever n > N. Furthermore, there

exist finite sets I,, C {n,n + 1,...} and {\; };cz, C [0, 1] such that

gn(z) = Z)\zfz(x)7 Z)\i =1.

i€ly i€y

Through an easy computation we obtain that

9u(@) = g(@)| = | 2 Ahl@) = 3o hg ()] = | o Alhle) g DN =,

ZEIn ieln

which implies that g, — ga.e.x € ,s0 f = ga.e.x € ). And the proof is completed. O

Theorem 2.2 Let (f,,) be a sequence in LP, 1 < p < oo such that some of the following
assumptions hold,

@ |[fall, < M.

Gi) f,— faexeQ

() ||fn—flh = 0,n— .

(ii”) (f,) converges in measure to f.

If (i) holds and one of (ii)-(ii") holds, then f, — f weakly o(LP, L*").

Proof. We mainly prove the theorem under condition (i) and (ii). Since if (ii’) or (ii”) holds,

for any subsequence of ( f,), there exist its subsequence almost everywhere converges to f.

Casel 1 < p < oo. By (i), (ii) and Lemma 2.1, consider an arbitrary subsequence ( f,,, )
of (f,), going if necessary to a subsequence, we can assume that f,, — f weakly
o(LP, L*"). Therefore, (f,) — f weakly o(L?, L”"). For an alternative method we refer
to [5, Theorem 2.3.17].

Case 2 p = co. Given g € L'(Q), it is easy to know that ||f||cc < M and f,g — fga.e.x €
Q. Noting that |(f,, — f)g| < 2M|g| € L'(2), then by the dominated convergence

theorem we know the proof is completed.
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Remark 2.3 Theorem 2.2 fail if p = 1, that is, in this time condtions (i) and (ii) do not imply
fn — f weakly o(L”, L. We may construct the counterexample as follows, taking Q = R*

and '
fa(z) = EX(O,n)(x)v g(z) = 1.

then we have ||f,||1 = 1 and f, — f = 0a.e.x € Q, however, ¥n € N,
"1
fn(x)g(x)dx = / —dr =1-»0.
R+ o

Theorem 2.4 Let (f,) be a sequence in LP, 1 < p < oo such that some of the following
assumptions hold,

G fo— faexell

(ii) (f,) converges in measure to f.

(i) pe (1,00, ||fullp < M and ;1(Q2) < oc.

@) p e [1,00), lfally = [1f]ly < oo

(v) p€[l,00), and there exists F' € LP such that | f,(x)| < F(z), a.e.x € Q.

If (i),(iii) or (ii),(iii) hold, then f,, — f strongly in L9, 1 < q < p. If (i),(iv) or (i),(v) hold,
then f,, — f strongly in LP.

Proof.

Step 1. We first assume (i),(iii) hold, if 1 < p < oo, given € > 0, Egorov’s theorem guarantees
the existence of a measurable subset B C 2, such that u(B) < ¢ and f,, — f uniformly on
O\ B. Therefore, there exists N € N such that for n > N, we have

(/ |fn—f\qu) <e, Vg€l p).
Q\B

By applying Holder inequality we obtain that

/B‘fn—f}quﬁu(B)’;fz(/Bm_f‘pdx)g

< (B[ — £l
<u(B)7 (I1flly + M)

q
Then we infer from above that || f,, — f||, — 0, as n — oo.

If p = oo, we only need to note that |f,, — f|? < (2M)? € L'(f2) and the conclusion can
be derived by the dominated convergence theorem.

Step 2. Then if (ii),(iii) hold, then there are various ways to testify the problem.

Approach 1 We only consider p = oo, and it is analogous in other cases. Given ¢ > 0,
JdN eN,

(B = p({z € Q1 |ful2) - f@)] > 2}) <=



whenever n > N, we obtain that

[ 1t frras = /Q\En o S + / o= flde

< p(Q) + (M) e

Then the proof is completed.

Approach 2 By (ii), for any subsequence of (f,), there exist its subsequence almost every-

where converges to f. Then use the conclusion in Step 1.

Step 3. Next, we prove Theorem 2.4 under assumptions (i) and (iv). We present several

different methods for it.
Approach 1 By Brezis-Lieb’s lemma [2, Lemma 1.32] we immediately obtain the conclusion.

Approach 2 1t is obvious that {|| f"||P}n>1 are bounded, by Theorem 2.1 and Radon’s theo-

rem, the proof is completed. (This method hold true only for p € (1, c0)).

Approach 3 By Fatou’s lemma we observe that

o= 1" <27 (Il +111) = Fula),
therefore we know that f € LP. Futhermore, we can easily obtain that
(i) F.(x) = F(x) := 2P| f|P, a.e.x € Q.
(ii) nh_)rgo QFn(av)alav = /QF(x)dx

Thus, by the general dominated convergence theorem, f,, — f strongly in L”. Then the

proof is completed.

Approach 4 We first claim that V £/ C €2, the limit
lim [ |f,|[Pdz = / |f|Pdz

holds. In fact, since

n—oo

tim [ (fpde= [ \pae = [ gpas— [ (ppa
E Ec

n—oo

hm/yfypda:+ fim (—\fnyp>dx
EC

~ im / \fulPda.

/ fpde = lim [ |, pds
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Then given € > 0, there exists A C €, u(A) < oo and

€

Pdr < .
/W|f| <2

For the fixed e > 0,36 > 0, VE C Q and u(E) < 4, / |f|Pdx < g, by Egorov’s
E

theorem, 3 B C A such that (A N B°) < 6 and f,, — f uniformly on B. Therefore,
dN e N,,ifn> N,

3

3
o fPdr < S and rd ,
[l tpar < ana [ ppac< 2

then we have that

i [ (fa—ffae=Tm ([ o+ [+ ]
n—oo g n—reo QnAe B ANBe
<o [ (IfPaisp)ierz [ (1)
QNAc ANB¢ 5

19 9
< 2P. 44— =e.
= 5. o +5 €

The proof is ended since € > 0 is arbitrary.
Approach 5 We refer to [4, Page 306].
U

Remark 2.5 (1) The conclusion of (i) and (iii) in Theorem 2.4 may fail if ¢ = p, that is, in this
time (i),(iii) do not infer f,, — f strongly in L. Assume that Q) = (0, 1) and

1
Vn, x € (0,—),
n

1
0, T C [—,1).
n

fo—=0ll2=1-»0.If¢g=p =00, let Q2 =(0,1)

fn(x) =

then f, — 0, a.e.x € (0, 1), however,
and fp(x) = 2", n > 1, then

fn—0,aexe(0,1), but ||f, — 0|l =1,Vn e N,.

(2) The condition () < oo in (iii) cannot be dropped, or we consider ) = RT, p = 00, ¢ =
Land fu(x) = X (0,0 (), then f, — f =1, a.ex € Qbut ||f, — f|[1 = 00, Vn € N,.

(3) The condition [ € LP in (iv) cannot be dropped. Otherwise, considering that ) = R™ and
fo(@) = X0 (), f(2) =1, then || fullp = || f]lp = 00, but

1= Fl = [ o) = o0, ¥n € N,
R

(4) The conclusion of Theorem 2.4 may fail if p = oo in (iv) or (v). We shall consider a similar
counterexample as in (2) and take F(x) = 1.



(5) The conclusion of (ii) and (iii) in Theorem 2.4 may fail if 11(€)) = oo, we consider 1 < p <
00, Q = R and

Fal@) = 77X (0,0 (2),

then (f,) converges in measure to f = 0.and || f,|| = 1, but ||f., — f||. = n'"r = .

Theorem 2.6 Let (f,,) be a sequence in LP N L9, f € LP, 1 < p,q < oc. Futhermore,

fn— f stronglyin LP, ||full, < M, (2.1)
then f € L" and f,, — f strongly in L", for every r between p, r # q.
Proof. By inequality

9 - 1 6 1-86
Il <HRIEIAI 2=+ 2=l e

we immediately know that sup {||falls } < oc. From Fatou’s lemma we can see that f € L"

for r between p and q. If 0 7é 0 then

10 =

£l < fa = FlI 5= A1
1-6
<= 11 (15l +11711,) =0 asm = o,

which ends the proof. ]

Theorem 2.7 (Radon) Let (f,,) be a sequence in LP, 1 < p < oo, if f, — f weakly o(LP, L*")
and || fullp = || f|lp, n — oo. Then f,, — f strongly in LP.

Proof. For an alternative approach one can see [3, Theorem 6.29]. Here we present another
method. From the following Clarkson’s first and second inequality,

i 1
Hf g Hf g 5(||f||g+y|g”g),vf,geLwSp@Q

p’ 1 1
< (G170 + Sllall) "V fg e 12 1< p <2

p

+Hf—g

f+qll’
2 2

p

We infer that LP spaces are uniformly convex for 1 < p < oco. Then by [1, Proposition 3.32]
we know that the proof is ended. 0J

Remark 2.8 Radon’s theorem may fail if p = 1, 0. For counterexamples, see [3, Page 287].

Theorem 2.9 Assume that 1(§2) < oo, for 1 < p < oo, if (f,,) converges to f uniformly in L?,
then f, — f strongly in L?.

Proof. We only need to note that

10 s < swplsue) = 0 1) 0

asn —ooif 1 < p < oo. O
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Theorem 2.10 Suppose that ( f,,) are measurable functions on ) such that

£al@) 2 fa(@) (£ul@) € fra(@)), k €Ny
hold, then (f,) converges in measure to a measurable function f if and only if f,(x) —
f(x), a.e.x € L.
Proof. The conclusion can be obtained by Riesz’s theorem and the monotonicity of (f,). O

Theorem 2.11 Let (f,,) be a sequence in L*(Q) and f € L*(Q), for all measurable subset

EcCQif
[ h@yin < [ fuatorde, vn e N,
E E

then

lim f,(x) = f(x), a.e.x € Q2

n—oo
if and only if

lim / fo(z)dx = / f(z)dz
Proof. See [3, Exercise 4.5, 4.23]. O

Theorem 2.12 Let (f,) be a sequence in LP(Y) and [ € LP(QQ), then
(i) ifl < p < oo, then the following properties are equivalent,
(A) f, — f weakly o(LP, L"").

(B) ||fn||pSMand/Efn(a:)dx%/Ef(x)da:,‘V’ECQ, w(E) < oo.

(ii) ifp =1and p(Q) < oo, then the equivalence in (i) also holds.
(i) if p = 1 and p(Q) = oo, then (A)=(B) but (B)%(A).

Proof. We first prove (i).
(A)=-(B) The boundness of || f,,||, can be inferred by Banach-Steinhaus theorem. Then in the
definition of weak convergence in L”, taking g(z) = xp(z).

(B)=(A) We aim to prove the following limit

lim fn dx—/f x)dz, VgeL”
n—oo

hold. Now we present two methods.

Approach 1 In the beginning, we assume that g is a step function of compact support, that is,

k
g(z) = > aiXEi(w), where ;1(F;) < oo, then
i=1

/n D=3 m/h )X, ()

_Za,/ fol(z dx—)Za,/f dx—/f z)dz, asn — oco.



If ¢ € L¥, by density, there exist a sequence of step funcions (gm) of compact support

such that g,, — ¢ strongly in L?'. Then from

‘/ang—fgdx

Q

Efl—i‘IQ—i‘]g,

+‘/ﬂfngm_fgmdx

+‘/Qf9m—fgdx

the boundness of {||fall,} -,
such that [, I3 < %Wheneverm >M.Fixm>M,3dN € N,if n > N, then I, < %,

which completes the proof of (i).

and Holder inequality we know that givene > 0,3 M € N

Approach 2 Now we devote to prove (ii), similarly, it is easy to prove (A)=(B). Arguing by

contradiction, if there exist a subsequence (f,, ), €0 > 0 and gy € L? such that

[ tusdo> [ fado e, VieN., (22)
Q Q

meanwhile, since ||f,, ||, < M, then there exist a subsequence ( fnkj) and a function
h € LP such that f, = — h weakly o(LP, L"), From (B) and the definition of weak
convergence we infer that V £/ C Q, u(FE) < oo,

/Efd:c:/Ehdx,

which implies that f = h, a.e. on ), then f,, — f weakly o(LP, L*"), which contradicts
to (2.2).

For the proof of (ii), we use the fact that the set of simple functions are dense in L*° and a

similar proof as (i). The counterexample of (iii) we refer to Remark 2.3. 0

Remark 2.13 The conclusion of Theorem 2.6 may fail if r = q, that is, (2.1) cannot infer
|| fn — fllg = O, for instance, let p = 1 and r = q = o0, then see the examples in Remark 2.5

(1).

Theorem 2.14 ( [1, Theorem 4.9]) Let (f,) be a subsequence in L*, 1 < p < oo and let
f € L be such that ||f, — f||, = 0. Then there exist a subsequence (f,,) and a function
h € LP such that

@ fo, () = f(x), a.ex € Q.
(i) |fo, (2)] < h(z), Yk €N, a.e.x € Q.

Remark 2.15 There are other relationships lie in convergence methods, we only list some of
them and omit the proofs here.

(1) Assume that (f,,) converges in measure to f, meanwhile,

() = fa(y)| < Mz —yl, 2,y € Q.

Then there exists a measurable function f such that f, — fa.e.x € €.
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(2) Let (f,,) be a nonnegative sequence in LP, 1 < p < oo, then f, — f strongly in LP if and
only if f? — fP strongly in L.
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