Homework for Real Analysis(V)

Zhenyi Zhang*

School of Mathematical Sciences, Peking University

December 31, 2023

1 Answer

1.

证明. 注意到由绝对连续性, 我们有

$$f(x) - f(a) = \int_a^x f'(t)dt. \tag{1.1}$$

又 f(a) = 0, 故

$$f(x) = \int_{a}^{x} f'(t)dt. \tag{1.2}$$

代入即得

$$\int_{a}^{b} |f'(x)f(x)| dx = \int_{a}^{b} |f'(x)| \int_{a}^{x} f'(t) dt | dx
\leq \int_{a}^{b} \int_{a}^{b} \chi_{\{t \geq x\}} |f'(t)f'(x)| dt dx$$
(1.3)

注意到由 Fubini 定理与对称性, 上式将 t 和 x 交换后不变, 故

$$\int_{a}^{b} \int_{a}^{b} \chi_{\{t \geq x\}} |f'(t)f'(x)| dt dx = \frac{1}{2} \left[\int_{a}^{b} \int_{a}^{b} \left(\chi_{\{t \geq x\}} + \chi_{\{t \leq x\}} \right) |f'(t)f'(x)| dt dx \right]
= \frac{1}{2} \left[\int_{a}^{b} \int_{a}^{b} |f'(t)f'(x)| dt dx \right]
= \frac{1}{2} \left(\int_{a}^{b} |f'(x)| dx \right)^{2},$$
(1.4)

即证毕.

^{*}E-mail: zhenyizhang@stu.pku.edu.cn

2. 第二题除了几乎处处收敛外, 满足一些其他的条件也可保证弱收敛:

Theorem 1.1. Let (f_n) be a sequence in $L^p, 1 such that some of the following assumptions hold,$

- (i) $\sup_n ||f_n||_p \leq M$.
- (ii) $f_n \to f$ a.e. $x \in \Omega$.
- (ii') $||f_n f||_1 \to 0, n \to \infty$.
- (ii') (f_n) converges in measure to f.
- If (i) holds and one of (ii)-(ii') holds, then $f_n \rightharpoonup f$ weakly $\sigma(L^p, L^{p'})$.

注 1.1. 一些同学直接使用控制收敛定理, 这是不对的, 注意到条件 (i) 不能保证 $\sup_n |f_n| \in L^p$, 这个要成立还需要满足一些极大函数的不等式 (比如有点像鞅的 $Doob\ L^p\ maximal\ inequality\ 的东西).$

满足条件 (i) 和 (ii) 的证明是关键的, 其余的由依测度收敛的性质取子列即得. 这个有两种证明, 第一种证明是简单的, 首先考虑有限测度空间, 之后再用逼近的思想 (由于 \mathbb{R}^d 是 σ 有限的测度空间).

证明. 由 f_n 的一致有界性, 以及 $f_n \to f$ a.e. 由 Fatou 引理有:

$$\int_{\Omega} |f|^p d\mu \le \liminf_{n \to \infty} |f_n|^p d\mu \le M,\tag{1.5}$$

故有 $f \in L^p$. 要证弱收敛即证对任意的 $g \in L^q$, $\frac{1}{p} + \frac{1}{q} = 1$ 都有

$$\int_{\Omega} (f_n - f)gd\mu \to 0, (n \to \infty). \tag{1.6}$$

一方面由于 $f, f_n \in L^p, g \in L^q$ 且测度有限, 由 Hölder 不等式知 $f, f_n, g \in L^1$, 故

$$\int_{\Omega} |g| d\mu < M_1. \tag{1.7}$$

一方面由 $f_n \to f$ a.e. 由 Egorv 定理知 $\forall \delta > 0, \exists E_\delta \subset \Omega$, 使得 $\mu(E_\delta) < \delta$ 且在 $\Omega \setminus E_\delta \perp f_n \Longrightarrow f$. 另一方面由于 $g \in L^q$ 故由积分的绝对连续性, $\forall \epsilon > 0, \exists \delta > 0$ 使得只要 $\mu(E_\delta) < \delta$

$$\int_{E_{\delta}} |g|^q d\mu < \epsilon. \tag{1.8}$$

故取 Egorv 定理的 E_{δ} 即可. 故有

$$\int_{\Omega} (f_n - f)gd\mu \leq \int_{\Omega} |(f_n - f)||g|d\mu$$

$$\leq \int_{E_{\delta}} |(f_n - f)||g|d\mu + \int_{\Omega \setminus E_{\delta}} |(f_n - f)||g|d\mu$$

$$\leq \left(\int_{E_{\delta}} |(f_n - f)|^p d\mu\right)^{\frac{1}{p}} \left(\int_{E_{\delta}} |g|^q d\mu\right)^{\frac{1}{q}} + \int_{\Omega \setminus E_{\delta}} |(f_n - f)||g|d\mu.$$
(1.9)

由一致收敛性故

$$\int_{\Omega \setminus E_{\delta}} |(f_n - f)||g|d\mu < \epsilon M_1. \tag{1.10}$$

再由积分的绝对收敛性则有

$$\left(\int_{E_{\delta}} |(f_n - f)|^p d\mu\right)^{\frac{1}{p}} \left(\int_{E_{\delta}} |g|^q d\mu\right)^{\frac{1}{q}} < 2M\epsilon^{\frac{1}{q}}.$$
(1.11)

故令 $\epsilon \to 0$ 即得. 对于测度无穷的空间, 请考虑 $\Omega \cap B(0,k)$ 和 $\Omega \cap B(0,k)^c$, 则由 刚刚的证明知道

$$\int_{\Omega} (f_n - f) g \chi_{B(0,k)} d\mu \to 0, (n \to \infty). \tag{1.12}$$

对于后者 $\Omega \cap B(0,k)^c$, 和刚刚的估计一样, 注意到 $g \in L^q$, 且 $\mu(\Omega \cap B(0,k)^c) \to 0$ 当 $k \to \infty$ 时, 故

$$\int_{\Omega} (f_n - f) g \chi_{B(0,k)^c} d\mu \to 0, (n \to \infty). \tag{1.13}$$

证毕.

第二种证明使用两个引理 (周民强, P284, 285 定理 6.26 和定理 6.28), 由定理 6.28 知若满足条件 (i) 和 (ii) 的, 则其一定存在一个子列 f_{nk} 在 L^p 中弱收敛, 又 $f_n \to f$ a.e., 由定理 6.26 知极限唯一, 故 f_{nk} 弱收敛到 f. 即对 f_n 的任一子列, 都存在一个子列的子列弱收敛, 则立得 f_n 弱收敛 (定理 6.26 中的有限测度同样并不需要, 由于 \mathbb{R}^d 是 σ 有限的测度空间).

注 1.2. p=1 时定理不对, 考虑 $\Omega=\mathbb{R}^+$ 和

$$f_n(x) = \frac{1}{n}\chi_{(0,n)}(x), g(x) = 1.$$
(1.14)

则我们有 $||f_n|| = 1$ 且 $f_n \to 0$ a.e. 但是

$$\int_{R^{+}} f_{n}(x)g(x)dx = \int_{0}^{n} \frac{1}{n}dx = 1 \to 0.$$
 (1.15)

3. 将 \mathbb{Q} 排序为 $\{q_n\}$, 则定义如下函数即满足条件

$$f(x) := \sum_{k=1}^{\infty} \frac{1}{2^k} \chi_{[q_k, \infty)}(x).$$
 (1.16)

请大家自己验证.

- 4. $T_F([a,b]) \leq \int_a^b |F'(x)| dx$ 是显然的. 利用 $T_F(a,x) = P_F(a,x) + N_F(a,x)$ 另一边不等号即得.
- 5. 之前给大家总结过, 对于一个度量空间 (\mathcal{X}, d) 来说, 如果存在不可数子集 $A \subset \mathcal{X}, \exists d_0 > 0$ 使得对 $\forall x, y \in A(x \neq y)$, 有 $d(x, y) \geq d_0$, 则度量空间不可分. 故 考虑 $f_t(x) = \chi_{(0,t)}(x), 0 < t < \infty$ 即可, 这里的度量空间即 $(L^{\infty}, \|\cdot\|_{\infty})$.

注 1.3. 如何证明 l^{∞} 是不可分的?

- 6. 按定义验证即可.
- 7. (a) 设 f_n 是柯西列,则 f_n 在 C([0,1]) 是柯西列且 f'_n 在 L^1 空间是柯西列. 故知存在 f(x) 使得 $f_n(x)$ 一致收敛到 f(x),且存在 v(x) 使得 $f'_n(x)$ 在 L^1 收敛到 v(x).又我们知 $f_n(x) - f_n(0) = \int_0^x f'_n(t)dt$,故取极限有 $f(x) - f(0) = \int_0^x v(t)dt$,故有 $f' = v \in L^1$.故 f 绝对连续,且 f_n 依 AC 范数收敛到 f.
- (b) 由 $L^1([0,1])$ 可分, 故有可数稠密子集 ϕ_k , 则 AC 中的可数稠密子集定义为 $\psi_k := \int_0^x \phi_k$. 大家可以验证这是一个 AC 中的可数稠密子集.
- 8. 利用可测集 $E \subset \mathbb{R}$ 可以分解为可数紧集的并和一个零测集的并,由于绝对连续,故零测集的像集还是零测,连续函数把紧集映射为紧集,故可测.
- 9. 几个关键的证明点在于首先证明 F 绝对连续, 再由可积性可以推出 $\lim_{x\to\infty}F(x)=0$, 即得.

10.

$$g := f\chi_{\|f\| \ge 1}, h := f\chi_{\|f\| < 1}. \tag{1.17}$$

- 11. 利用 Hölder 不等式和 Tonelli 定理即得, 证明见周民强 P278 定理 6.21.
- 12. 该问等价于证明如下定理:

Theorem 1.2. 设 $\{f_n\}$ 为 Hilbert 空间中的序列, 则 $||f_n - f||_2 \to 0$ 当且仅当

- $1. \{f_n\}$ 弱收敛到 f.
- 2. $||f_n||_2 \to ||f||_2$.
- 注 1.4. Hilbert 空间有很多很好的性质, 比如其具有内积结构, 而且他是一个自对偶空间 (Risez 表示定理), 所以这个定理实际上很好证. 但这个定理在 $L^p(1 也成立, 此即 Radon 定理 (周民强 <math>P286$, 定理 6.29), 这个时候证明不是很容易了.

证明. (⇒) 这个是容易的, 第一个是由于强收敛故一定有弱收敛成立:

$$|g(f_n) - g(f)| \le ||g|| ||f_n - f||, \tag{1.18}$$

这里是用了 Cauchy-Schwarz 定理, 对于一般的 Banach 空间来说 ||g|| 表示的是线性算子的范数, 第二个由三角不等式立得.

$$(\Longleftrightarrow)$$

$$||f_n - f||_2^2 = \langle f_n - f, f_n - f \rangle$$

$$= ||f_n||_2^2 - 2\langle f_n, f \rangle + ||f||_2^2.$$
(1.19)

由弱收敛知上式内积那一项趋于 $||f||_2^2$, 再有范数收敛, 故上式收敛于 0.

注 1.5. 关于无穷维空间如 L^p 空间或者是 Hilbert 空间中这些收敛的关系,大家在泛函分析会更加深入的学习,这部分可参考 Brezis 的 Functional Analysis, Sobolev Spaces and Partial Differential Equations, 或者是张恭庆老师写的泛函分析 $(L H)/(\Gamma H)$. 事实上更一般的,我们可以在一个拓扑向量空间 $(Topological\ Vector\ Space,\ TVS)$ 考虑这些关系,因为本质上来说我们只需要拓扑和线性运算相容就可以了,这部分内容大家可以参考 Rudin 的 $Functional\ Analysis$, 或者是 Folland 的 $Real\ Analysis$. 现在实分析我们学习了在有限维空间构造 Lebsegue 测度,类似的我们可以考虑那无穷维空间上怎么构造测度呢? 无穷维空间上测度的构造和随机过程的构造是非常有关系的,比如 C([0,T]) 上 Wiener 测度的构造就对应着 $\mathbb R$ 上的布朗运动,Hilbert 空间上测度的构造这对应的是无穷维空间的布朗运动,

最后附录里面总结了在 L^p 空间上强收敛, 弱收敛, 依范数收敛的一些关系, 这个文档是由我本科的实分析的助教也是我的学长, 毕铖整理的, 供大家参考.

L^p空间中函数列收敛型的总结

这篇文章主要总结了一下Lp空间中函数列几乎处处收敛、强收敛、弱收敛、范数收敛、一致收敛、依测度收敛等收敛方式的关系以及它们的证明。

其中有几个定理我们给出了多种不同的证明方法,在一些p的范围的端点,比如1和 ,如果定理不成立我们给出了反例(由于一开始写的时候就是用英语写的,现在也就不再花时间翻译回来了,<u>请忽略我简单粗暴的英文表达!!!!!!</u>),大家有兴趣可以看一下里面的各种结论,其中有一些结论是取自 H.Brezis 的泛函分析书。

1 Notations

Let Ω be a σ -finite measure space. Denote by $L^p(\Omega)$ the Lebesgue spaces equipped with the norm $||\cdot||_p$ and the Lebesgue measure μ , $1 \le p \le \infty$.

Definition 1.1 (Weak convergence in L^p **, [3])** Let $1 \le p, q \le \infty$, 1/p + 1/q = 1, $f \in L^p(\Omega)$, $f_n \in L^p(\Omega)$ ($n \in \mathbb{N}$), if

$$\lim_{n \to \infty} \int_{\Omega} f_n(x)g(x)dx = \int_{\Omega} f(x)g(x)dx, \,\forall \, g \in L^q(\Omega), \tag{1.1}$$

then we say that (f_n) converges weakly to f.

For simplicity, we shall use the following notations describing the convergence.

- (1) " $f_n \to f$ a.e. $x \in \Omega$ ": almost everywhere convergence on Ω .
- (2) " $f_n \rightharpoonup f$ weakly $\sigma(L^p, L^{p'})$ ": weak convergence in L^p .
- (3) " $f_n \to f$ strongly in L^p ": $||f_n f||_p \to 0$ as $n \to \infty$.

2 Summerization of relationships

Lemma 2.1 Suppose that (f_n) is a sequence in $L^p(\Omega)$, and the following conditions hold,

- (a) $f_n \rightharpoonup f$ weakly $\sigma(L^p, L^{p'})$,
- **(b)** $f_n \to g \ a.e. \ x \in \Omega$,

then f = g, a.e. in Ω .

Proof 1 of Lemma 2.1. In view of [3, Theorem 6.26] and Ω is a σ -finite measure space, the proof is completed.

Proof 2 of Lemma 2.1. Define $K_n = \operatorname{conv}\Big(\bigcup_{i=n}^\infty \{f_i\}\Big)$. By [1, Exercise 3.13] we know $f \in K_n$. Thus, there exists $g_n \in \operatorname{conv}\Big(\bigcup_{i=n}^\infty \{f_i\}\Big)$ such that $||g_n - f||_p < \frac{1}{n}$ and therefore we shall choose $\{g_{n_k}\}$ such that $g_{n_k} \to f$ a.e. in Ω . In view of (b), for almost everywhere $x \in \Omega$, given $\varepsilon > 0$, there exists $N \in \mathbb{N}$, $|f_n(x) - g(x)| < \varepsilon$ whenever $n \geq N$. Furthermore, there exist finite sets $I_n \subseteq \{n, n+1, \ldots\}$ and $\{\lambda_i\}_{i \in I_n} \subset [0, 1]$ such that

$$g_n(x) = \sum_{i \in I_n} \lambda_i f_i(x), \ \sum_{i \in I_n} \lambda_i = 1.$$

Through an easy computation we obtain that

$$\left| g_n(x) - g(x) \right| = \left| \sum_{i \in I_n} \lambda_i f_i(x) - \sum_{i \in I_n} \lambda_i g(x) \right| = \left| \sum_{i \in I_n} \lambda_i (f_i(x) - g(x)) \right| \le \varepsilon \sum_{i \in I_n} \lambda_i = \varepsilon,$$

which implies that $g_n \to g$ a.e. $x \in \Omega$, so f = g a.e. $x \in \Omega$. And the proof is completed.

Theorem 2.2 Let (f_n) be a sequence in L^p , 1 such that some of the following assumptions hold,

- (i) $||f_n||_p \leq M$.
- (ii) $f_n \to f \ a.e. \ x \in \Omega$.
- (ii') $||f_n f||_1 \to 0, n \to \infty.$
- (ii'') (f_n) converges in measure to f.
- If (i) holds and one of (ii)-(ii'') holds, then $f_n \rightharpoonup f$ weakly $\sigma(L^p, L^{p'})$.

Proof. We mainly prove the theorem under condition (i) and (ii). Since if (ii') or (ii'') holds, for any subsequence of (f_n) , there exist its subsequence almost everywhere converges to f.

Case 1 $1 . By (i), (ii) and Lemma 2.1, consider an arbitrary subsequence <math>(f_{n_k})$ of (f_n) , going if necessary to a subsequence, we can assume that $f_{n_k} \rightharpoonup f$ weakly $\sigma(L^p, L^{p'})$. Therefore, $(f_n) \rightharpoonup f$ weakly $\sigma(L^p, L^{p'})$. For an alternative method we refer to [5, Theorem 2.3.17].

Case 2 $p = \infty$. Given $g \in L^1(\Omega)$, it is easy to know that $||f||_{\infty} \leq M$ and $f_n g \to fg$ a.e. $x \in \Omega$. Noting that $|(f_n - f)g| \leq 2M|g| \in L^1(\Omega)$, then by the dominated convergence theorem we know the proof is completed.

Remark 2.3 Theorem 2.2 fail if p = 1, that is, in this time conditions (i) and (ii) do not imply $f_n \rightharpoonup f$ weakly $\sigma(L^p, L^{p'})$. We may construct the counterexample as follows, taking $\Omega = \mathbb{R}^+$ and

$$f_n(x) = \frac{1}{n} \chi_{(0,n)}(x), \ g(x) = 1.$$

then we have $||f_n||_1 = 1$ and $f_n \to f = 0$ a.e. $x \in \Omega$, however, $\forall n \in \mathbb{N}_+$,

$$\int_{\mathbb{R}^+} f_n(x)g(x)dx = \int_0^n \frac{1}{n}dx = 1 \nrightarrow 0.$$

Theorem 2.4 Let (f_n) be a sequence in L^p , $1 \le p \le \infty$ such that some of the following assumptions hold,

- (i) $f_n \to f \ a.e. \ x \in \Omega$.
- (ii) (f_n) converges in measure to f.
- (iii) $p \in (1, \infty], ||f_n||_p \leq M \text{ and } \mu(\Omega) < \infty.$
- (iv) $p \in [1, \infty), ||f_n||_p \to ||f||_p < \infty.$
- (v) $p \in [1, \infty)$, and there exists $F \in L^p$ such that $|f_n(x)| \le F(x)$, $a.e.x \in \Omega$.

If (i),(iii) or (ii),(iii) hold, then $f_n \to f$ strongly in L^q , $1 \le q < p$. If (i),(iv) or (i),(v) hold, then $f_n \to f$ strongly in L^p .

Proof.

Step 1. We first assume (i),(iii) hold, if $1 , given <math>\varepsilon > 0$, Egorov's theorem guarantees the existence of a measurable subset $B \subset \Omega$, such that $\mu(B) < \varepsilon$ and $f_n \to f$ uniformly on $\Omega \backslash B$. Therefore, there exists $N \in \mathbb{N}$ such that for $n \geq N$, we have

$$\left(\int_{\Omega \setminus B} \left| f_n - f \right|^q dx \right)^{\frac{1}{q}} < \varepsilon, \ \forall \, q \in [1, p).$$

By applying Hölder inequality we obtain that

$$\int_{B} |f_{n} - f|^{q} dx \leq \mu(B)^{\frac{p-q}{p}} \left(\int_{B} |f_{n} - f|^{p} dx \right)^{\frac{q}{p}}$$

$$\leq \mu(B)^{\frac{p-q}{p}} \left| |f_{n} - f||_{p}^{q}$$

$$\leq \mu(B)^{\frac{p-q}{p}} \left(||f||_{p} + M \right)^{q}.$$

Then we infer from above that $||f_n - f||_q \to 0$, as $n \to \infty$.

If $p = \infty$, we only need to note that $|f_n - f|^q \le (2M)^q \in L^1(\Omega)$ and the conclusion can be derived by the dominated convergence theorem.

Step 2. Then if (ii),(iii) hold, then there are various ways to testify the problem.

Approach 1 We only consider $p = \infty$, and it is analogous in other cases. Given $\varepsilon > 0$, $\exists N \in \mathbb{N}$,

$$\mu(E_n) := \mu\Big(\big\{x \in \Omega : |f_n(x) - f(x)| > \varepsilon\big\}\Big) < \varepsilon$$

whenever $n \geq N$, we obtain that

$$\int_{\Omega} |f_n - f|^r dx = \int_{\Omega \setminus E_n} |f_n - f|^r dx + \int_{E_n} |f_n - f|^r dx$$
$$\leq \varepsilon^r \cdot \mu(\Omega) + (2M)^r \cdot \varepsilon.$$

Then the proof is completed.

Approach 2 By (ii), for any subsequence of (f_n) , there exist its subsequence almost everywhere converges to f. Then use the conclusion in **Step 1**.

Step 3. Next, we prove Theorem 2.4 under assumptions (i) and (iv). We present several different methods for it.

Approach 1 By Brezis-Lieb's lemma [2, Lemma 1.32] we immediately obtain the conclusion.

Approach 2 It is obvious that $\{||f_n||_p\}_{n\geq 1}$ are bounded, by Theorem 2.1 and Radon's theorem, the proof is completed. (This method hold true only for $p\in(1,\infty)$).

Approach 3 By Fatou's lemma we observe that

$$|f_n - f|^p \le 2^{p-1} (|f_n|^p + |f|^p) =: F_n(x),$$

therefore we know that $f \in L^p$. Futhermore, we can easily obtain that

(i)
$$F_n(x) \to F(x) := 2^p |f|^p$$
, a.e. $x \in \Omega$.

(ii)
$$\lim_{n\to\infty} \int_{\Omega} F_n(x) dx = \int_{\Omega} F(x) dx$$
.

Thus, by the general dominated convergence theorem, $f_n \to f$ strongly in L^p . Then the proof is completed.

Approach 4 We first claim that $\forall E \subset \Omega$, the limit

$$\lim_{n \to \infty} \int_E |f_n|^p dx = \int_E |f|^p dx$$

holds. In fact, since

$$\underbrace{\lim_{n \to \infty} \int_{E} |f_{n}|^{p} dx} \ge \int_{E} |f|^{p} dx = \int_{\Omega} |f|^{p} dx - \int_{E^{c}} |f|^{p} dx$$

$$\ge \int_{\Omega} |f|^{p} dx - \underbrace{\lim_{n \to \infty} \int_{E^{c}} |f_{n}|^{p} dx}$$

$$= \lim_{n \to \infty} \int_{\Omega} |f|^{p} dx + \overline{\lim_{n \to \infty} \int_{E^{c}} \left(-|f_{n}|^{p} \right) dx}$$

$$= \overline{\lim_{n \to \infty} \int_{E} |f_{n}|^{p} dx.$$

Then given $\varepsilon > 0$, there exists $A \subset \Omega$, $\mu(A) < \infty$ and

$$\int_{\Omega \cap A^c} |f|^p dx < \frac{\varepsilon}{5 \cdot 2^p}.$$

For the fixed $\varepsilon>0$, $\exists\,\delta>0$, $\forall E\subset\Omega$ and $\mu(E)<\delta$, $\int_E|f|^pdx<\frac{\varepsilon}{5}$, by Egorov's theorem, $\exists\,B\subset A$ such that $\mu(A\cap B^c)<\delta$ and $f_n\to f$ uniformly on B. Therefore, $\exists\,N\in\mathbb{N}_+$, if $n\geq N$,

$$\int_{B} |f_n - f|^p dx < \frac{\varepsilon}{5} \quad \text{and} \quad \int_{A \cap B^c} |f|^p dx < \frac{\varepsilon}{5 \cdot 2^p},$$

then we have that

$$\overline{\lim}_{n \to \infty} \int_{\Omega} |f_n - f|^p dx = \overline{\lim}_{n \to \infty} \left(\int_{\Omega \cap A^c} + \int_{B} + \int_{A \cap B^c} \right) \\
\leq 2^p \int_{\Omega \cap A^c} \left(|f_n|^p + |f|^p \right) dx + 2^p \int_{A \cap B^c} \left(|f_n|^p + |f|^p \right) dx + \frac{\varepsilon}{5} \\
\leq 2^p \cdot \frac{\varepsilon}{5 \cdot 2^p} \cdot 4 + \frac{\varepsilon}{5} = \varepsilon.$$

The proof is ended since $\varepsilon > 0$ is arbitrary.

Approach 5 We refer to [4, Page 306].

Remark 2.5 (1) The conclusion of (i) and (iii) in Theorem 2.4 may fail if q = p, that is, in this time (i),(iii) do not infer $f_n \to f$ strongly in L^p . Assume that $\Omega = (0,1)$ and

$$f_n(x) = \begin{cases} \sqrt{n}, & x \in \left(0, \frac{1}{n}\right), \\ 0, & x \in \left[\frac{1}{n}, 1\right). \end{cases}$$

then $f_n \to 0$, $a.e. x \in (0,1)$, however, $||f_n - 0||_2 = 1 \to 0$. If $q = p = \infty$, let $\Omega = (0,1)$ and $f_n(x) = x^n$, $n \ge 1$, then

$$f_n \to 0, \ a.e.x \in (0,1), \ but \ ||f_n - 0||_{\infty} = 1, \ \forall \ n \in \mathbb{N}_+.$$

- (2) The condition $\mu(\Omega) < \infty$ in (iii) cannot be dropped, or we consider $\Omega = \mathbb{R}^+$, $p = \infty$, q = 1 and $f_n(x) = \chi_{(0,n)}(x)$, then $f_n \to f = 1$, $a.e.x \in \Omega$ but $||f_n f||_1 = \infty$, $\forall n \in \mathbb{N}_+$.
- (3) The condition $f \in L^p$ in (iv) cannot be dropped. Otherwise, considering that $\Omega = \mathbb{R}^+$ and $f_n(x) = \chi_{(0,n)}(x)$, f(x) = 1, then $||f_n||_p \to ||f||_p = \infty$, but

$$||f_n - f||_p^p = \int_{\mathbb{R}^+} \chi_{(n,\infty)}^p(x) dx = \infty, \, \forall \, n \in \mathbb{N}_+.$$

(4) The conclusion of Theorem 2.4 may fail if $p = \infty$ in (iv) or (v). We shall consider a similar counterexample as in (2) and take F(x) = 1.

(5) The conclusion of (ii) and (iii) in Theorem 2.4 may fail if $\mu(\Omega) = \infty$, we consider $1 , <math>\Omega = \mathbb{R}^+$ and

$$f_n(x) = n^{-\frac{1}{p}} \chi_{(0,n)}(x),$$

then (f_n) converges in measure to f=0 and $||f_n||=1$, but $||f_n-f||_r^r=n^{1-\frac{r}{p}}\to\infty$.

Theorem 2.6 Let (f_n) be a sequence in $L^p \cap L^q$, $f \in L^p$, $1 \le p, q \le \infty$. Futhermore,

$$f_n \to f$$
 strongly in L^p , $||f_n||_q \le M$, (2.1)

then $f \in L^r$ and $f_n \to f$ strongly in L^r , for every r between $p, r \neq q$.

Proof. By inequality

$$||f_n||_r \le ||f_n||_p^{\theta} ||f_n||_q^{1-\theta}, \quad \frac{1}{r} = \frac{\theta}{p} + \frac{1-\theta}{q}, \quad \theta \in [0, 1]$$

we immediately know that $\sup_{n\geq 1}\big\{\,||f_n||_r\,\big\}<\infty.$ From Fatou's lemma we can see that $f\in L^r$ for r between p and q. If $\theta\neq 0$, then

$$||f_n - f||_r \le ||f_n - f||_p^{\theta} ||f_n - f||_q^{1-\theta}$$

 $\le ||f_n - f||_p^{\theta} \cdot (||f_n||_q + ||f||_q)^{1-\theta} \to 0, \text{ as } n \to \infty,$

which ends the proof.

Theorem 2.7 (Radon) Let (f_n) be a sequence in L^p , $1 , if <math>f_n \rightharpoonup f$ weakly $\sigma(L^p, L^{p'})$ and $||f_n||_p \rightarrow ||f||_p$, $n \rightarrow \infty$. Then $f_n \rightarrow f$ strongly in L^p .

Proof. For an alternative approach one can see [3, Theorem 6.29]. Here we present another method. From the following Clarkson's first and second inequality,

$$\left| \left| \frac{f+g}{2} \right| \right|_{p}^{p} + \left| \left| \frac{f-g}{2} \right| \right|_{p}^{p} \le \frac{1}{2} \left(||f||_{p}^{p} + ||g||_{p}^{p} \right), \ \forall f, g \in L^{p}, \ 2 \le p < \infty.$$

$$\left| \left| \frac{f+g}{2} \right| \right|_{p}^{p'} + \left| \left| \frac{f-g}{2} \right| \right|_{p}^{p'} \le \left(\frac{1}{2} ||f||_{p}^{p} + \frac{1}{2} ||g||_{p}^{p} \right)^{\frac{1}{p-1}}, \forall f, g \in L^{p}, \ 1$$

We infer that L^p spaces are uniformly convex for 1 . Then by [1, Proposition 3.32] we know that the proof is ended.

Remark 2.8 Radon's theorem may fail if $p = 1, \infty$. For counterexamples, see [3, Page 287].

Theorem 2.9 Assume that $\mu(\Omega) < \infty$, for $1 \le p \le \infty$, if (f_n) converges to f uniformly in L^p , then $f_n \to f$ strongly in L^p .

Proof. We only need to note that

$$\int_{\Omega} |f_n - f|^p dx \le \sup_{x \in \Omega} |f_n(x) - f(x)|^p \cdot \mu(\Omega) \to 0$$

as
$$n \to \infty$$
 if $1 \le p < \infty$.

Theorem 2.10 Suppose that (f_n) are measurable functions on Ω such that

$$f_n(x) \ge f_{n+1}(x) \left(f_n(x) \le f_{n+1}(x) \right), k \in \mathbb{N}_+$$

hold, then (f_n) converges in measure to a measurable function f if and only if $f_n(x) \to f(x)$, $a.e.x \in \Omega$.

Proof. The conclusion can be obtained by Riesz's theorem and the monotonicity of (f_n) . \square

Theorem 2.11 Let (f_n) be a sequence in $L^1(\Omega)$ and $f \in L^1(\Omega)$, for all measurable subset $E \subset \Omega$, if

$$\int_{E} f_n(x)dx \le \int_{E} f_{n+1}(x)dx, \, \forall \, n \in \mathbb{N}_+,$$

then

$$\lim_{n \to \infty} f_n(x) = f(x), \ a.e.x \in \Omega$$

if and only if

$$\lim_{n\to\infty}\int_E f_n(x)dx=\int_E f(x)dx.$$

Proof. See [3, Exercise 4.5, 4.23].

Theorem 2.12 Let (f_n) be a sequence in $L^p(\Omega)$ and $f \in L^p(\Omega)$, then

- (i) if 1 , then the following properties are equivalent,
 - (A) $f_n \rightharpoonup f$ weakly $\sigma(L^p, L^{p'})$.

(B)
$$||f_n||_p \leq M$$
 and $\int_E f_n(x) dx \to \int_E f(x) dx$, $\forall E \subset \Omega$, $\mu(E) < \infty$.

- (ii) if p = 1 and $\mu(\Omega) < \infty$, then the equivalence in (i) also holds.
- (iii) if p = 1 and $\mu(\Omega) = \infty$, then $(A) \Rightarrow (B)$ but $(B) \Rightarrow (A)$.

Proof. We first prove (i).

- (A) \Rightarrow (B) The boundness of $||f_n||_p$ can be inferred by Banach-Steinhaus theorem. Then in the definition of weak convergence in L^p , taking $g(x) = \chi_E(x)$.
- $(B) \Rightarrow (A)$ We aim to prove the following limit

$$\lim_{n\to\infty} \int_{\Omega} f_n(x)g(x)dx = \int_{\Omega} f(x)g(x)dx, \,\forall \, g\in L^{p'}$$

hold. Now we present two methods.

Approach 1 In the beginning, we assume that g is a step function of compact support, that is, $g(x) = \sum_{i=1}^{k} a_i \chi_{E_i}(x)$, where $\mu(E_i) < \infty$, then

$$\begin{split} \int_{\Omega} f_n(x)g(x)dx &= \sum_{i=1}^k a_i \int_{\Omega} f_n(x) \chi_{E_i}(x) dx \\ &= \sum_{i=1}^k a_i \int_{E_i} f_n(x) dx \to \sum_{i=1}^k a_i \int_{E_i} f(x) dx = \int_{\Omega} f(x)g(x) dx, \text{ as } n \to \infty. \end{split}$$

If $g \in L^{p'}$, by density, there exist a sequence of step funcions (g_m) of compact support such that $g_m \to g$ strongly in $L^{p'}$. Then from

$$\left| \int_{\Omega} f_n g - f g \, dx \right| \le \left| \int_{\Omega} f_n g - f_n g_m \, dx \right| + \left| \int_{\Omega} f_n g_m - f g_m \, dx \right| + \left| \int_{\Omega} f g_m - f g \, dx \right|$$

$$\equiv I_1 + I_2 + I_3,$$

the boundness of $\{||f_n||_p\}_{n\geq 1}$ and Hölder inequality we know that given $\varepsilon>0, \exists\, M\in\mathbb{N}$ such that $I_1,\,I_3\leq \frac{\varepsilon}{3}$ whenever $m\geq M.$ Fix $m\geq M,\,\exists\, N\in\mathbb{N}$, if n>N, then $I_2\leq \frac{\varepsilon}{3}$, which completes the proof of (i).

Approach 2 Now we devote to prove (ii), similarly, it is easy to prove (A) \Rightarrow (B). Arguing by contradiction, if there exist a subsequence (f_{n_k}) , $\varepsilon_0 > 0$ and $g_0 \in L^{p'}$ such that

$$\int_{\Omega} f_{n_k} g_0 \, dx \ge \int_{\Omega} f g_0 \, dx + \varepsilon_0, \, \forall \, k \in \mathbb{N}_+, \tag{2.2}$$

meanwhile, since $||f_{n_k}||_p \leq M$, then there exist a subsequence $(f_{n_{k_j}})$ and a function $h \in L^p$ such that $f_{n_{k_j}} \rightharpoonup h$ weakly $\sigma(L^p, L^{p'})$. From (B) and the definition of weak convergence we infer that $\forall E \subset \Omega, \ \mu(E) < \infty$,

$$\int_{E} f \, dx = \int_{E} h \, dx,$$

which implies that f = h, a.e. on Ω , then $f_{n_{k_j}} \rightharpoonup f$ weakly $\sigma(L^p, L^{p'})$, which contradicts to (2.2).

For the proof of (ii), we use the fact that the set of simple functions are dense in L^{∞} and a similar proof as (i). The counterexample of (iii) we refer to Remark 2.3.

Remark 2.13 The conclusion of Theorem 2.6 may fail if r=q, that is, (2.1) cannot infer $||f_n-f||_q \to 0$, for instance, let p=1 and $r=q=\infty$, then see the examples in Remark 2.5 (1).

Theorem 2.14 ([1, Theorem 4.9]) Let (f_n) be a subsequence in L^p , $1 \le p \le \infty$ and let $f \in L^p$ be such that $||f_n - f||_p \to 0$. Then there exist a subsequence (f_{n_k}) and a function $h \in L^p$ such that

- (i) $f_{n_k}(x) \to f(x), a.e.x \in \Omega$.
- (ii) $|f_{n_k}(x)| \leq h(x), \forall k \in \mathbb{N}, a.e.x \in \Omega.$

Remark 2.15 There are other relationships lie in convergence methods, we only list some of them and omit the proofs here.

(1) Assume that (f_n) converges in measure to f, meanwhile,

$$|f_n(x) - f_n(y)| \le M|x - y|, \ x, y \in \Omega.$$

Then there exists a measurable function f such that $f_n \to f$ a.e. $x \in \Omega$.

(2) Let (f_n) be a nonnegative sequence in L^p , $1 , then <math>f_n \to f$ strongly in L^p if and only if $f_n^p \to f^p$ strongly in L^1 .

References

- [1] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, vol. XIV, Springer, New York, 2011.
- [2] M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996.
- [3] M.Zhou, Theory of Real Variable Function, Peking University Press, 2018.
- [4] M.Zhou, Exercises and Solutions of Real Variable Function, Peking University Press, 2018.
- [5] 实分析讲义