实变函数第一次作业总结

张振毅

- 6. 基本上有两种思路(一种使用有限覆盖定理证明,另外一种使用中值定理和介值定理证明)注:使用 Newton-Leibniz 公式需要注意使用条件,即 f 绝对连续
- 7. 大部分同学都是先证明代数数可数,再说明超越数不可数,但是需要注意代数数不一定都是实数 $(x^2 + 1 = 0)$,且超越数也有复数. 所以证明代数数可数以后,为了证明超越数不可数,要考虑 $C\setminus K$,其中 $K = \{k1, k2,...\}$ 表示代数数.
- 9. 大家的构造方法很多,这里给出一种构造方法,先考虑有界闭集,使用有限 覆盖定理构造,之后再考虑闭集
- 10. 基本上有两种思路,但是有需要注意的如下:

证明 方法一(拓扑). 反证法. 若 F 不含孤立点, 则 $F \subset F'$, 又 $F = \{x_1, x_2, ...\}$, 则

$$\overline{F \setminus \{x_j\}} = F, \forall j \in \mathbb{N}.$$

从而

$$\bigcap_{j=1}^{\infty} \left(F \setminus \{x_j\} \right) = F. \tag{3.0.1}$$

但是 $\bigcap_{i=1}^{\infty} (F \setminus \{x_i\}) = \emptyset$, 矛盾.

注意: 其中 (3.0.1) 一步不是显然的. 即 A_n 在 B 中稠未必能推出 $\bigcap_{j=1}^{\infty} A_n$ 在 B 中稠,但这里是可以,本质上是因为这个题目中 F 是闭集,由课本 P44 例 14 (其中 \mathbb{R}^n 可改成任意**完备度量空间**),此题中 F 是闭集故可看成完备度量空间,定义其上的拓扑:

$$\mathscr{F} := \{U \cap F | U 为 \mathbb{R}^n + n$$
中的开集}.

因此对任意 $j \in \mathbb{N}$, $F \setminus \{x_i\}$ 是 F 中的开集. 从而由例 14 可得 (3.0.1).

方法二. 反证, 若 $F \subset F'$, 则设 $F = \{x_1, x_2, ...\}$, 则

- (1) 对于 x_1 , 作 $\overline{B(x_1, \delta_1)}$, 由 $x_1 \in F'$, 知存在 $x_j \in B(x_1, \delta_1)$, 选取这样下标最小的 j, 记为 y_2 , 作 $\overline{B(y_2, \delta_2)} \subset B(x_1, \delta_1)$, 且保证
 - 1. $x_1 \notin \overline{B(y_2, \delta_2)}$.
 - **2.** $\delta_2 < \frac{\delta_1}{2}$, 这是可以做到的, 只需 $y_2 \neq x_1$.
- (2) 重复上面的步骤,第 k-1步,得到满足条件的 y_k .
- (3) 一直进行下去,得到一列闭球 $\left\{\overline{B(y_n,\delta_n)}\right\}$ 且 $\delta_n \to 0$,由闭集套定理,

$$\bigcap_{n=1}^{\infty} \overline{B(y_n, \delta_n)} \neq \emptyset.$$

设 $a \in \bigcap_{n=1}^{\infty} \overline{B(y_n, \delta_n)}$. 易证, $a \in F$, 但 $a \neq x_n$, $\forall n \in \mathbb{N}$, 矛盾.

另:有些同学写证明的时候用三个点表示"因为""所以",但是一般在论文或者教科书里面写证明时我们不会用这个记号,建议大家书写规范。还有些同学证明写的非常简略,只有几句话,希望之后可以将过程写的详细一些。